Network Objects

Instructor: Rob Faludi

Plan for Today

- XBee API Review & I/O API
- XBee Sleep
- Final Project Presentation Info
- Final Project Progress (2 minute reports)
- ZigBee
- Wireless Sound Objects
- Readings & Assignments

XBee API Mode

API Mode

- Application Programming Interface
 - "An application programming interface (API) is a source code interface that an operating system or library provides to support requests for services to be made of it by computer programs."

http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487

- XBees in API mode are ready to talk to computers and microcontrollers
 - structured
 - predictable
 - reliable

API Structure

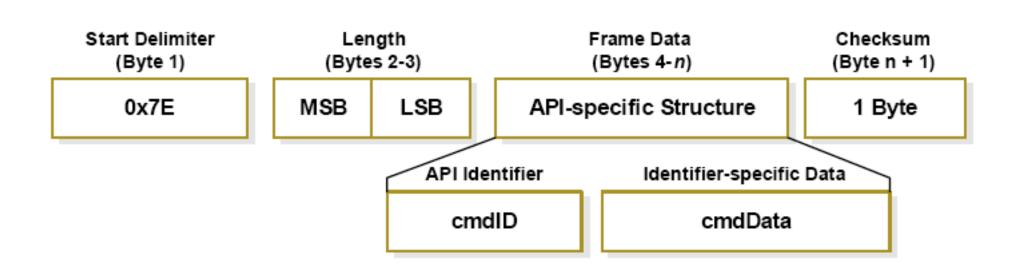
- Used in serial communications with the XBee radio
- Frames of data
 - envelope structure contains data with metadata inside a constrained format
- Radio must be in API Mode
 - AT command ATAP 1 on Series 1 radios
 - API firmware on Series 2 radios

Why API

• Rather than:

```
delay(1100);
// put the XBee in command mode
Serial.print("+++");
delay(1100);
if (checkFor("OK", 1000)) {
   Serial.println("ATID7777,CN");
   if (checkFor("OK", 1000)) {
     // if an OK was received then continue
     debugPrintln("SetupOK");
     success = true;
   }
}
```

• With a library you just write:


```
sendCommand(ID,0x7777);
```

Envelope Has:

• From address, to address, outside, inside, size, contents, error check

May E. Hill 1205 Jindew St, N.E., SHING, Washington, D.C., SING 3 1919 S.POST Lieut. Daniel Grafton Hill Jr. Co. M. 368th Infantry american Expeditionary Frees via New York.

API Basic Frame Envelope

Start Byte

- 0x7E --> also known as the tilde in ASCII: ~
- First thing to do is look for it:

```
// ARDUINO VERSION:
if (Serial.available() > 0) { // if a byte is waiting in the buffer
    inByte = Serial.read(); // read a byte from the buffer
    if (inByte == 0x7E) {
       // we're at the start of an API frame!
       // add more code here
    }
  }
  // PROCESSING VERSION:
if (port.available() > 0 {
  int inByte = port.read();
    if (inByte == 0x7E) {
       // we're at the start of an API frame!
       // add more code here
}
```

Length Bytes

- MSB: the Most Significant Byte
 - the big part of the number
- LSB: the Least Significant Byte
 - the small part of the number
- bit shift MSB to the right and add it to LSB

```
// PROCESSING VERSION:
int lengthMSB = port.read(); // high byte for length of packet
int lengthLSB = port.read(); // low byte for length of packet
```

int lengthTotal = (lengthMSB << 8) + lengthLSB; // bit shift and add for total</pre>

API Identifier

- Specifies the remaining structure of the frame
 - modem status: 0x8A
 - AT command (immediate): 0x08
 - AT command (queued): 0x09
 - AT command response: 0x88
 - TX request (64 bit): 0x00
 - TX request (16 bit): 0x01
 - TX status response: 0x89
 - RX packet (64 bit): 0x80
 - RX packet (16 bit): 0x81
 - RX packet I/O data (64 bit): 0x82
 - RX packet I/O data (16 bit): 0x83

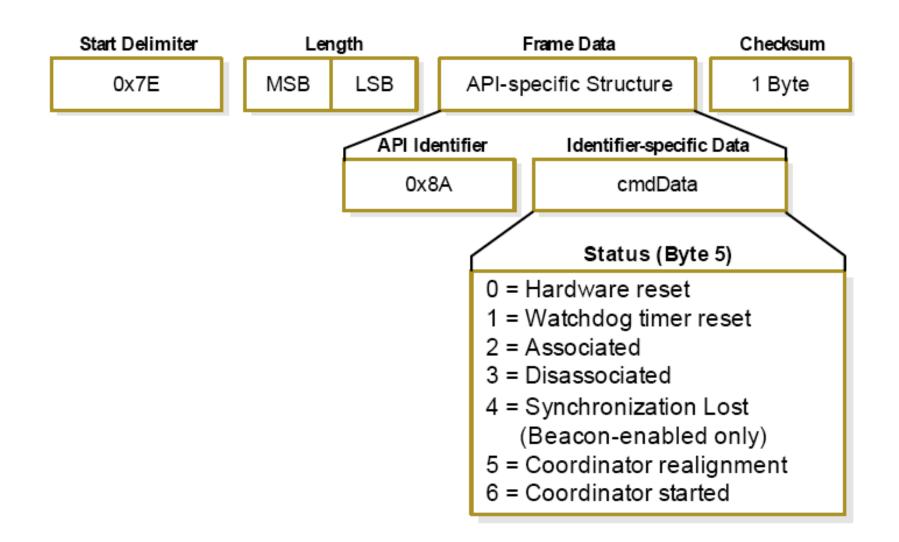
// PROCESSING VERSION:

```
int API_ID = port.read(); // API Identifier indicates type of packet received
```

Identifier-specific Data

- Structures are different for each API identifier and might include:
 - addressing information (333B)
 - status information (received OK)
 - source information (broadcast packet)
 - unstructured data ("Hello World, this is Rob!")
 - structured data (typically for I/O packets)

Checksum


- Simple check to detect errors
- To calculate: Not including frame delimiters and length, add all bytes keeping only the lowest 8 bits of the result and subtract from 0xFF.
- To verify: Add all bytes (include checksum, but not the delimiter and length). If the checksum is correct, the sum will equal 0xFF.

```
// PROCESSING VERSION:
int localChecksum = (API_ID + addrMSB + addrLSB + RSSI + options + dataSum);
int checksum = port.read();
localChecksum = byte(0xFF -localChecksum);
if ( (byte) checksum - localChecksum == 0) {
  returnVal = dataADC[0];
}
else {
  print("\n\nchecksum error! " + "\n\n");
}
```

Many Kinds of Envelopes

Modem Status

AT Command

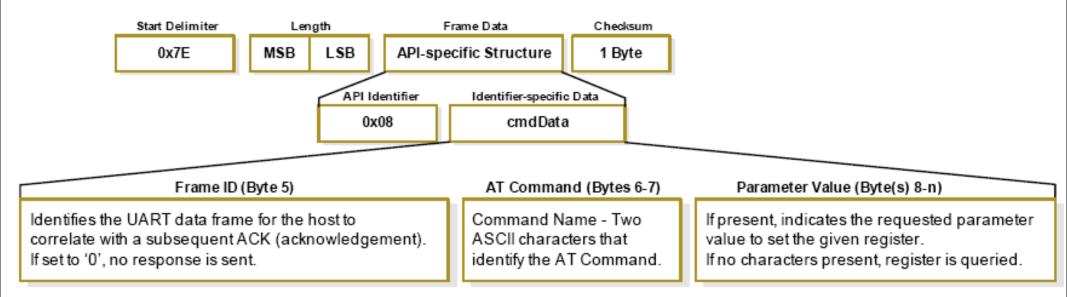
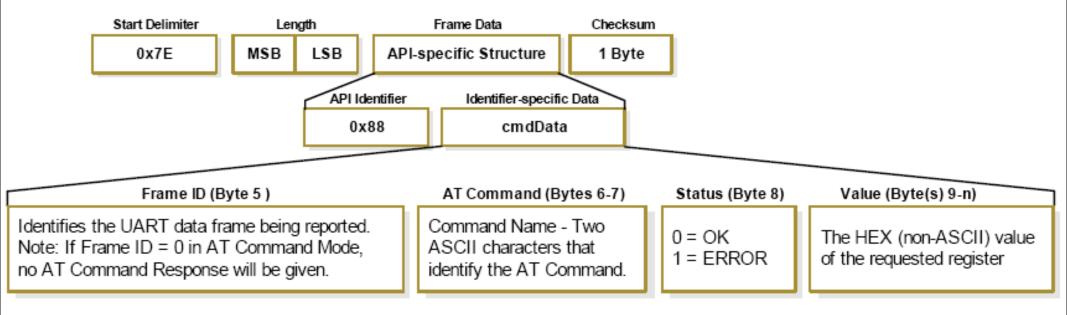
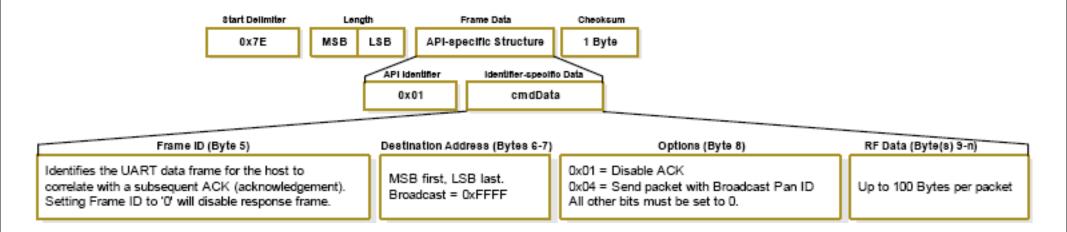
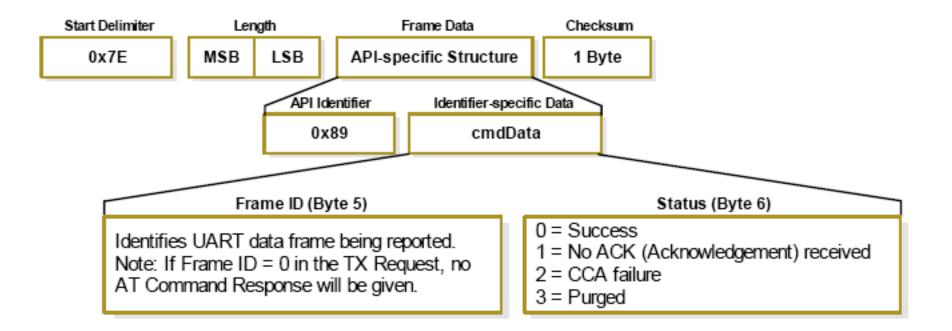



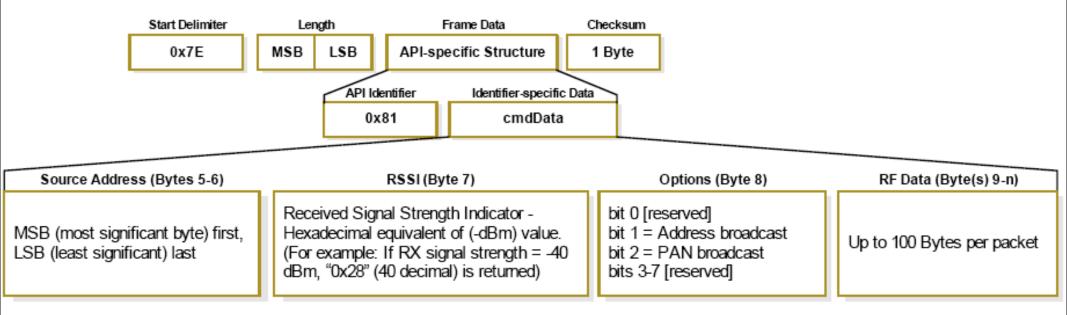
Figure 3-06. Example: API frames when reading the DL parameter value of the module.


AT Response

• Frame ID for the response is the same as the matching AT Command request

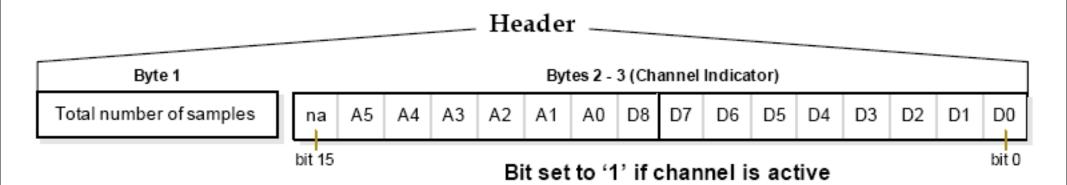

TX (Transmit) Request

- Remember that this is a request
- Also need to check for results by Frame ID


TX Status (Results)

- See if your message was transmitted or not
- Use your Frame ID to see which message is being described

RX Packet (16 bit addressing)


- Maximum of 100 bytes of data per packet
- RF Data section is basis for I/O packets

I/O Data Header

• Inside the RF Data section of the RX Packet

- Total number of samples set with ATIS
- Channels set with ATD0...9

I/O Data Sample

- Follows the header
- Two bytes of digital data IF ANY DIGITAL CHANNELS ENABLED followed by...
- ...two bytes for EACH analog channel enabled...
- ...then repeats for each sample

	Sample Data																	
	DIO Line Data is first (if enabled)														ADC Line Data			
x	х	х	х	х	х	х	8	7	6	5	4	3	2	1	0		ADCn MSB	ADCn LSB

• How many bytes if ATIS5 ATD02 ATD12 ATD23?

I/O Code: Basic

• Fixed parameters make for easier programming

• Assume we are just reading a single sample of one ADC channel at a time:

```
print(dataADC); // print the information
```

}

XBee Sleep Mode

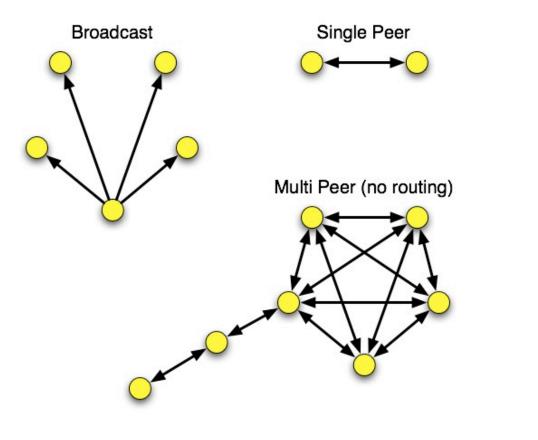
Sleeping the XBee: Basics

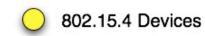
- Why Sleep?
- ATSM
 - 1: pin hibernate, <10 µA, 13.2 ms wakeup, uses pin 9
 - 2: pin doze, <50 µA, 2 ms wakeup
 - 3: <nothing>
 - 4: cyclic sleep, also <50 µA, 2 ms wakeup, module must be idle
 - 5: cyclic sleep with pin wakeup
- ATSP: Sleep Period (* 10 ms)
- ATST: Time before Sleep (* 1 ms)

Sleeping the XBee: Example

- ATSM5,SP64,ST14
 - Will wake up on pin 9 high, and also every 1000 ms for 20 ms
- Use in conjunction with I/O readings
 - Wakeup will <u>always</u> trigger an I/O sample
 - More samples if ATIR allows it during the awake period
 - More samples if ATIT (Samples before TX) is set
- ATIC (Pin Change Detect) will not affect wakeup

XBee Series 1 vs. Series 2

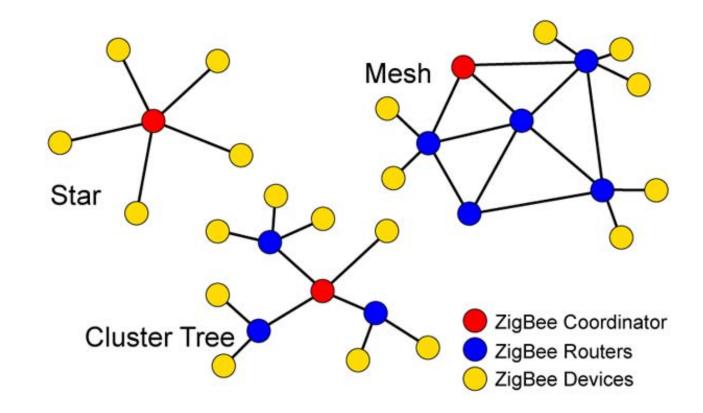

- 802.15.4 (SERIES 1)
 - 802.15.4 only
 - ADC & Digital I/O
 - point-to-point networking
 - unicast or broadcast
 - low power with good range
 - mature and simpler


• ZNet 2.5 (SERIES 2) and ZB

- ZigBee only
- I/O with less Analog and 1.2V
- Full ZigBee mesh networking
- unicast, broadcast or multicast
- slightly better range & power
- newer more complexity

802.15.4 Topologies

- single peer
- multi-peer
- broadcast

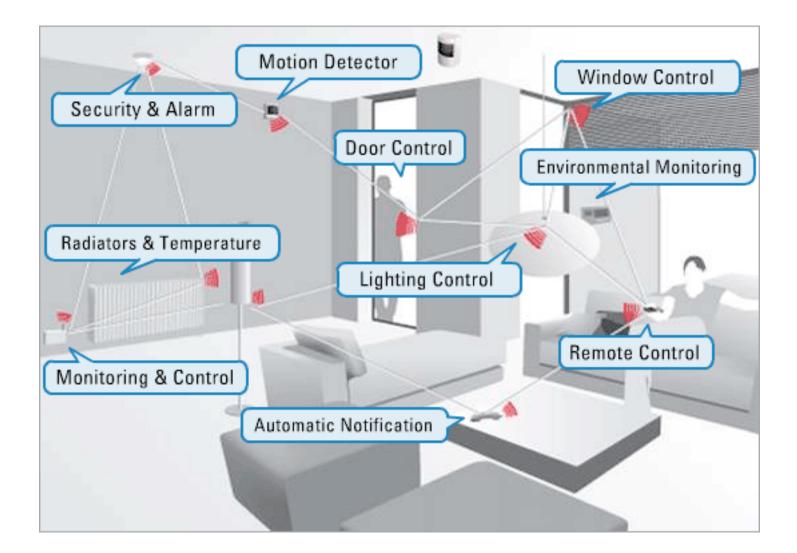

ZigBee Basics

- Coordinator
- Routers
- End devices

• A ZigBee network is minimally: 1 coordinator and 1 router (or end device)

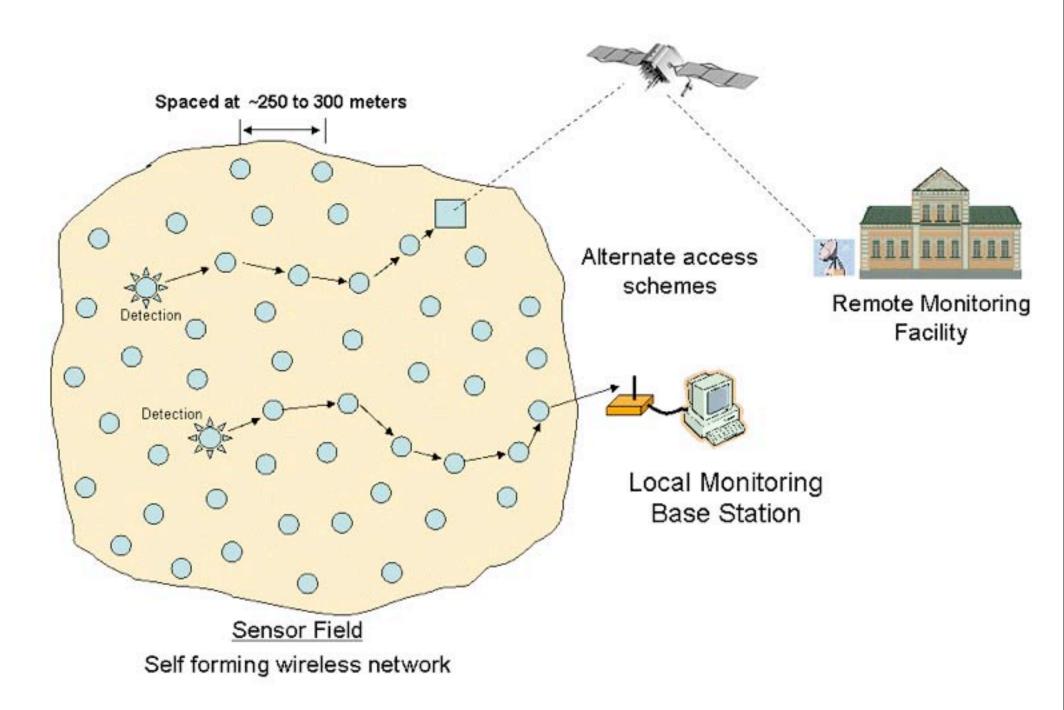
ZigBee Topologies

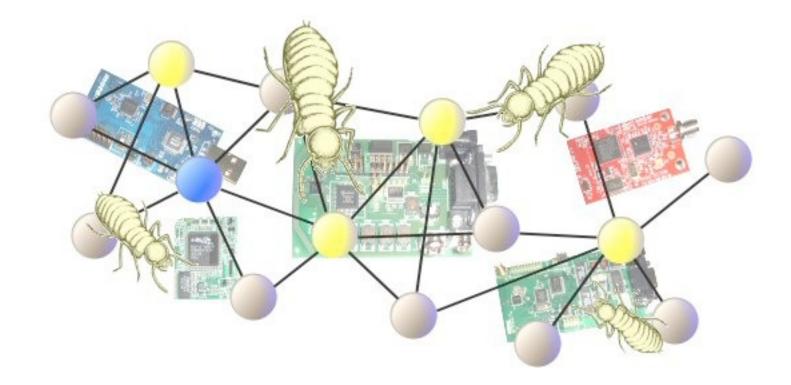
- peer
- star
- mesh
- routing



ZigBee Coordinator

- Every ZigBee network <u>must</u> have a coordinator
- There can only be <u>one</u> coordinator
- Coordinator selects channel and PAN ID
- End devices and routers can then join the PAN
- Typically mains-powered
- Coordinator's 16-bit address is always 0


ZigBee Router


- Non-coordinator routers are optional to ZigBee networks
- Typically mains-powered
- Many can be on each PAN
- Issues a beacon request on startup to locate channel and PAN
- Routers can communicate with any device on the network
- Stores packets for sleeping end devices
- 16-bit address assigned by coordinator

ZigBee End Device

- Optional to ZigBee networks
- Typically battery-powered
- Many can be on each PAN
- Issues a beacon request on startup to locate channel and PAN
- Automatically attempts to join a valid PAN
- End devices can only communicate directly with their parent
- 16-bit address assigned by coordinator

http://www.stg.com/wireless/ZigBee_Termites.html

XBee Series 2

- Coordinator Firmware
 - for AT commands or API
- Router/End Device Firmware
 - for AT commands or API
- ...so 4 different firmware combinations (you'll always use 2 at the same time)
- and 4 antennas! whip, chip, U.FL and RPSMA.

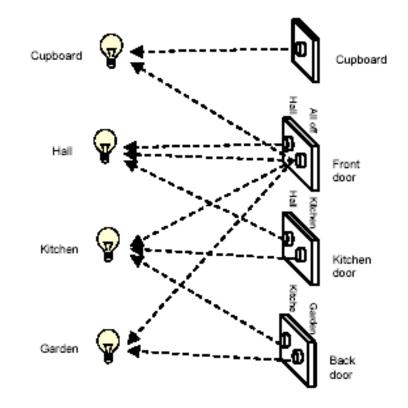
Special Features

- Remote AT commands
 - send an AT command request to another node
 - only works in API mode, which means using API version of firmware
- Loopback: ATZA1,CI12,SEE8,DEE8 and then pick a destination node
- Join Indicators: ATJN to send a notification to the coordinator on join
- Battery Monitoring: AT%V for value then (value/1023*1200 = mV)

Starting Up an XBee ZigBee Network

- Coordinator:
 - scans and selects a channel
 - picks a PAN or uses a predetermined one
 - Associate light blinks, ATAI is set to zero (or a value indicating error)
- Router or End Device
 - scans for PANs on each channel
 - selects a PAN to join (often the predetermined one)
 - sends a beacon request to join to a parent router or coordinator
 - Associate light blinks, ATAI is set to zero (or a value indicating error)

Transmitting Data


• Read a list of all nodes on the network using ATND

MY<CR> SH<CR> SL<CR> NI<CR> (Variable length) PARENT_NETWORK ADDRESS (2 Bytes)<CR> DEVICE_TYPE<CR> (1 Byte: 0=Coord, 1=Router, 2=End Device) STATUS<CR> (1 Byte: Reserved) PROFILE_ID<CR> (2 Bytes) MANUFACTURER_ID<CR> (2 Bytes) <CR>

• Set the Destination Node using ATDN

Endpoints, Clusters and Bindings

- Another addressing scheme for defining groups of radios and actions, typically for home networking.
- Beyond the scope of this class and not immediately useful to us.

Readings and Assignments

- Assignment
 - Final Project