
Network Objects	

Instructor: Rob Faludi

Plan for Today

• XBee API Review & I/O API

• XBee Sleep

• Final Project Presentation Info

• Final Project Progress (2 minute reports)

• ZigBee

• Wireless Sound Objects

• Readings & Assignments

XBee API Mode

API Mode

• Application Programming Interface

• “An application programming interface (API) is a source code interface that
an operating system or library provides to support requests for services to
be made of it by computer programs.”
 http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487

• XBees in API mode are ready to talk to computers and microcontrollers

• structured

• predictable

• reliable

http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487

API Structure

• Used in serial communications with the XBee radio

• Frames of data

• envelope structure contains data with metadata inside a constrained format

• Radio must be in API Mode

• AT command ATAP 1 on Series 1 radios

• API firmware on Series 2 radios

Why API

• Rather than:

• With a library you just write:

delay(1100);
 // put the XBee in command mode

Serial.print("+++");
delay(1100);
if (checkFor("OK", 1000)) {

Serial.println("ATID7777,CN");
 if (checkFor("OK", 1000)) {
 // if an OK was received then continue
 debugPrintln("SetupOK");
 success = true;

}
}

sendCommand(ID,0x7777);

• From address, to address, outside, inside, size, contents, error check

Envelope Has:

API Basic Frame Envelope

Start Byte

• 0x7E --> also known as the tilde in ASCII: ~

• First thing to do is look for it:

 // ARDUINO VERSION:
if (Serial.available() > 0) { // if a byte is waiting in the buffer
 inByte = Serial.read(); // read a byte from the buffer

 if (inByte == 0x7E) {
// we’re at the start of an API frame!
// add more code here

}
}

 // PROCESSING VERSION:
if (port.available() > 0 {

int inByte = port.read();
 if (inByte == 0x7E) {

// we’re at the start of an API frame!
// add more code here

}

Length Bytes

• MSB: the Most Significant Byte

• the big part of the number

• LSB: the Least Significant Byte

• the small part of the number

• bit shift MSB to the right and add it to LSB

 // PROCESSING VERSION:
int lengthMSB = port.read(); // high byte for length of packet
int lengthLSB = port.read(); // low byte for length of packet

int lengthTotal = (lengthMSB << 8) + lengthLSB; // bit shift and add for total

API Identifier

• Specifies the remaining structure of the frame
• modem status: 0x8A
• AT command (immediate): 0x08
• AT command (queued): 0x09
• AT command response: 0x88
• TX request (64 bit): 0x00
• TX request (16 bit): 0x01
• TX status response: 0x89
• RX packet (64 bit): 0x80
• RX packet (16 bit): 0x81
• RX packet I/O data (64 bit): 0x82
• RX packet I/O data (16 bit): 0x83

 // PROCESSING VERSION:
int API_ID = port.read(); // API Identifier indicates type of packet received

Identifier-specific Data

• Structures are different for each API identifier and might include:

• addressing information (333B)

• status information (received OK)

• source information (broadcast packet)

• unstructured data (“Hello World, this is Rob!”)

• structured data (typically for I/O packets)

Checksum

• Simple check to detect errors

• To calculate: Not including frame delimiters and length, add all bytes keeping
only the lowest 8 bits of the result and subtract from 0xFF.

• To verify: Add all bytes (include checksum, but not the delimiter and length). If
the checksum is correct, the sum will equal 0xFF.

 // PROCESSING VERSION:
int localChecksum = (API_ID + addrMSB + addrLSB + RSSI + options + dataSum);

int checksum = port.read();
localChecksum = byte(0xFF -localChecksum);

if ((byte) checksum - localChecksum == 0) {
returnVal = dataADC[0];

}
else {

print("\n\nchecksum error! " + "\n\n");
}

Many Kinds of Envelopes

Modem Status

AT Command

AT Response

• Frame ID for the response is the same as the matching AT Command request

TX (Transmit) Request

• Remember that this is a request

• Also need to check for results by Frame ID

TX Status (Results)

• See if your message was transmitted or not

• Use your Frame ID to see which message is being described

RX Packet (16 bit addressing)

• Maximum of 100 bytes of data per packet

• RF Data section is basis for I/O packets

I/O Data Header

• Inside the RF Data section of the RX Packet

• Total number of samples set with ATIS

• Channels set with ATD0...9

I/O Data Sample

• Follows the header

• Two bytes of digital data IF ANY DIGITAL CHANNELS ENABLED followed by...

• ...two bytes for EACH analog channel enabled...

• ...then repeats for each sample

• How many bytes if ATIS5 ATD02 ATD12 ATD23?

I/O Code: Basic

• Fixed parameters make for easier programming

• Assume we are just reading a single sample of one ADC channel at a time:

 // PROCESSING VERSION:
int totalSamples = port.read(); // this is the number of samples we're receiving
int channelIndicatorHigh = port.read(); // this tells us which analog channels

// are in use (and one digital channel)
int channelIndicatorLow = port.read(); // this tells us which digital channels

// are in use.

int dataADCMSB = port.read(); // read in the most significant ADC byte
int dataADCLSB = port.read(); // read in the least significant ADC byte
int dataADC = (dataADCMSB << 8) + dataADCLSB; // bit shift the MSB into

// position and add it to the LSB

 print(dataADC); // print the information
}

XBee Sleep Mode

Sleeping the XBee: Basics

• Why Sleep?

• ATSM

• 1: pin hibernate, <10 µA, 13.2 ms wakeup, uses pin 9

• 2: pin doze, <50 µA, 2 ms wakeup

• 3: <nothing>

• 4: cyclic sleep, also <50 µA, 2 ms wakeup, module must be idle

• 5: cyclic sleep with pin wakeup

• ATSP: Sleep Period (* 10 ms)

• ATST: Time before Sleep (* 1 ms)

Sleeping the XBee: Example

• ATSM5,SP64,ST14

• Will wake up on pin 9 high, and also every 1000 ms for 20 ms

• Use in conjunction with I/O readings

• Wakeup will always trigger an I/O sample

• More samples if ATIR allows it during the awake period

• More samples if ATIT (Samples before TX) is set

• ATIC (Pin Change Detect) will not affect wakeup

XBee ZigBee

XBee Series 1 vs. Series 2

• 802.15.4 (SERIES 1)

• 802.15.4 only

• ADC & Digital I/O

• point-to-point networking

• unicast or broadcast

• low power with good range

• mature and simpler

• ZNet 2.5 (SERIES 2) and ZB

• ZigBee only

• I/O with less Analog and 1.2V

• Full ZigBee mesh networking

• unicast, broadcast or multicast

• slightly better range & power

• newer more complexity

802.15.4 Topologies

• single peer

• multi-peer

• broadcast

ZigBee Basics

• Coordinator

• Routers

• End devices

• A ZigBee network is minimally: 1 coordinator and 1 router (or end device)

ZigBee Topologies

• peer

• star

• mesh

• routing

ZigBee Coordinator

• Every ZigBee network must have a coordinator

• There can only be one coordinator

• Coordinator selects channel and PAN ID

• End devices and routers can then join the PAN

• Typically mains-powered

• Coordinator’s 16-bit address is always 0

ZigBee Router

• Non-coordinator routers are optional to ZigBee networks

• Typically mains-powered

• Many can be on each PAN

• Issues a beacon request on startup to locate channel and PAN

• Routers can communicate with any device on the network

• Stores packets for sleeping end devices

• 16-bit address assigned by coordinator

ZigBee End Device

• Optional to ZigBee networks

• Typically battery-powered

• Many can be on each PAN

• Issues a beacon request on startup to locate channel and PAN

• Automatically attempts to join a valid PAN

• End devices can only communicate directly with their parent

• 16-bit address assigned by coordinator

http://www.stg.com/wireless/ZigBee_Termites.html

http://www.stg.com/wireless/ZigBee_Termites.html
http://www.stg.com/wireless/ZigBee_Termites.html

XBee Series 2

• Coordinator Firmware

• for AT commands or API

• Router/End Device Firmware

• for AT commands or API

• ...so 4 different firmware combinations (you’ll always use 2 at the same time)

• and 4 antennas! whip, chip, U.FL and RPSMA.

Special Features

• Remote AT commands

• send an AT command request to another node

• only works in API mode, which means using API version of firmware

• Loopback: ATZA1,CI12,SEE8,DEE8 and then pick a destination node

• Join Indicators: ATJN to send a notification to the coordinator on join

• Battery Monitoring: AT%V for value then (value/1023*1200 = mV)

Starting Up an XBee ZigBee Network

• Coordinator:

• scans and selects a channel

• picks a PAN or uses a predetermined one

• Associate light blinks, ATAI is set to zero (or a value indicating error)

• Router or End Device

• scans for PANs on each channel

• selects a PAN to join (often the predetermined one)

• sends a beacon request to join to a parent router or coordinator

• Associate light blinks, ATAI is set to zero (or a value indicating error)

Transmitting Data

• Read a list of all nodes on the network using ATND

MY<CR>
SH<CR>
SL<CR>
NI<CR> (Variable length)
PARENT_NETWORK ADDRESS (2 Bytes)<CR>
DEVICE_TYPE<CR> (1 Byte: 0=Coord, 1=Router, 2=End Device)
STATUS<CR> (1 Byte: Reserved)
PROFILE_ID<CR> (2 Bytes)
MANUFACTURER_ID<CR> (2 Bytes)
<CR>

• Set the Destination Node using ATDN

Endpoints, Clusters and Bindings

• Another addressing scheme for defining groups of radios and actions, typically
for home networking.

• Beyond the scope of this class and not immediately useful to us.

Readings and Assignments

• Assignment

• Final Project

