
Collaborative Mesh Networking	

Instructor: Rob Faludi
Week 10

Final Project

• Discuss final project options

• Must include collaboration

• Should include publishing info that is used by others

Research Results: Mysteries Solved

• Startup doesn’t initiate a new channel scan

• Channels are set by bits, described by hex codes

• Channels are not reset until an ATFR or ATNR0

• If no PAN is found on the selected channels, ATCH remains 0

• ATNR1 resets whole network, but if coordinator doesn’t get the message the
net is orphaned. Yikes!

• Good idea to pick a channel and stick with it, same as with PAN ID

Research Results: Remote Control

• Remote AT commands work!

• I/O ports can be remotely polled
 (Justin asked about this last week)

• Remember you can only use these from the XBee Series 2 API firmware

• Example code is a proof-of-concept hack

• A proper library will be much more usable

API Mode

• Application Programming Interface

• “An application programming interface (API) is a source code interface that
an operating system or library provides to support requests for services to
be made of it by computer programs.”
 http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487

• XBees in API mode are ready to talk to computers and microcontrollers

• structured

• predictable

• reliable

API Structure

• Used in serial communications with the XBee radio

• Frames of data

• envelope structure contains data with metadata inside a constrained format

• Radio must be in API Mode

• AT command APAI 1 on Series 1 radios

• API firmware on Series 2 radios

Why API

• Rather than:

• With a library you just write:

delay(1100);
 // put the XBee in command mode

Serial.print("+++");
delay(1100);
if (checkFor("OK", 1000)) {

Serial.println("ATID7777,CN");
 if (checkFor("OK", 1000)) {
 // if an OK was received then continue
 debugPrintln("SetupOK");
 success = true;

}
}

sendCommand(ID,0x7777);

• From address, to address, outside, inside, size, contents, error check

Envelope Has:

API Basic Frame Envelope

Start Byte

• 0x7E --> also known as the tilde in ASCII: ~

• First thing to do is look for it:

 // ARDUINO VERSION:
if (Serial.available() > 0) { // if a byte is waiting in the buffer
 inByte = Serial.read(); // read a byte from the buffer

 if (inByte == 0x7E) {
// we’re at the start of an API frame!
// add more code here

}
}

 // PROCESSING VERSION:
if (port.available() > 0 {

int inByte = port.read();
 if (inByte == 0x7E) {

// we’re at the start of an API frame!
// add more code here

}

Length Bytes

• MSB: the Most Significant Byte

• the big number

• LSB: the Least Significant Byte

• the small number

• bit shift MSB to the right and add it to LSB

 // PROCESSING VERSION:
int lengthMSB = port.read(); // high byte for length of packet
int lengthLSB = port.read(); // low byte for length of packet

int lengthTotal = (lengthMSB << 8) + lengthLSB; // bit shift and add for total

API Identifier

• Specifies the remaining structure of the frame
• modem status: 0x8A
• AT command (immediate): 0x08
• AT command (queued): 0x09
• AT command response: 0x88
• TX request (64 bit): 0x00
• TX request (16 bit): 0x01
• TX status response: 0x89
• RX packet (64 bit): 0x80
• RX packet (16 bit): 0x81
• RX packet I/O data (64 bit): 0x82
• RX packet I/O data (16 bit): 0x83

 // PROCESSING VERSION:
int API_ID = port.read(); // API Identifier indicates type of packet received

Identifier-specific Data

• Structures are different for each API identifier and might include:

• addressing information (333B)

• status information (received OK)

• source information (broadcast packet)

• unstructured data (“Hello World, this is Rob!”)

• structured data (typically for I/O packets)

Checksum

• Simple check to detect errors

• To calculate: Not including frame delimiters and length, add all bytes keeping
only the lowest 8 bits of the result and subtract from 0xFF.

• To verify: Add all bytes (include checksum, but not the delimiter and length). If
the checksum is correct, the sum will equal 0xFF.

 // PROCESSING VERSION:
int localChecksum = (API_ID + addrMSB + addrLSB + RSSI + options + dataSum);

int checksum = port.read();
localChecksum = byte(0xFF -localChecksum);

if ((byte) checksum - localChecksum == 0) {
returnVal = dataADC[0];

}
else {

print("\n\nchecksum error! " + "\n\n");
}

Many Kinds of Envelopes

Modem Status

AT Command

AT Response

• Frame ID for the response is the same as the matching AT Command request

TX (Transmit) Request

• Remember that this is a request

• Also need to check for results by Frame ID

TX Status (Results)

• See if your message was transmitted or not

• Use your Frame ID to see which message is being described

RX Packet (16 bit addressing)

• Maximum of 100 bytes of data per packet

• RF Data section is basis for I/O packets

I/O Data Header

• Inside the RF Data section of the RX Packet

• Total number of samples set with ATIS

• Channels set with ATD0...9

I/O Data Sample

• Follows the header

• Two bytes of digital data IF ANY DIGITAL CHANNELS ENABLED followed by...

• ...two bytes for EACH analog channel enabled...

• ...then repeats for each sample

• How many bytes if ATIS5 ATD02 ATD12 ATD23?

I/O Code: Basic

• Fixed parameters make for easier programming

• Assume we are just reading a single sample of one ADC channel at a time:

 // PROCESSING VERSION:
int totalSamples = port.read(); // this is the number of samples we're receiving
int channelIndicatorHigh = port.read(); // this tells us which analog channels

// are in use (and one digital channel)
int channelIndicatorLow = port.read(); // this tells us which digital channels

// are in use.

int dataADCMSB = port.read(); // read in the most significant ADC byte
int dataADCLSB = port.read(); // read in the least significant ADC byte
int dataADC = (dataADCMSB << 8) + dataADCLSB; // bit shift the MSB into

// position and add it to the LSB

 print(dataADC); // print the information
}

Sleeping the XBee: Review

• Why Sleep?

• ATSM

• 1: pin hibernate, <10 µA, 13.2 ms wakeup, uses pin 9

• 2: pin doze, <50 µA, 2 ms wakeup

• 3: <nothing>

• 4: cyclic sleep, also <50 µA, 2 ms wakeup, module must be idle

• 5: cyclic sleep with pin wakeup

• ATSP: Sleep Period (* 10 ms)

• ATST: Time before Sleep (* 1 ms)

Sleeping the XBee: Example

• ATSM5,SP64,ST14

• Will wake up on pin 9 high, and also every 1000 ms for 20 ms

• Use in conjunction with I/O readings

• Wakeup will always trigger an I/O sample

• More samples if ATIR allows it during the awake period

• More samples if ATIT (Samples before TX) is set

• ATIC (Pin Change Detect) will not affect wakeup

Group Genius

Readings and Assignments

• Readings

• Group Genius by Keith Sawyer, Part 1
 Read critically!

• Assignment

• Final project plan

