Fundamentals of Physical Computing

Instructor: Rob Faludi

Plan for Today

- Final Project Progress Reports
- Serial review
- Radios!
- Final Project Timeline
- Readings & Assignments

Final Project Progress

Radios

Radio Communications

• electromagnetic waves

• no medium required

modulation

• Well-described mystery: "air waves" "wireless" "ethereal communication"

Inverse Square Law

• power needs increase exponentially with distance

ZigBee & 802.15.4

- ZigBee is built on top of the IEEE 802.15.4 protocol
- XBee radios can be purchased with or without ZigBee
- XBee 802.15.4 vs. ZNet 2.5 vs. ZB Pro vs. DigiMesh
- All ways are useful

802.15.4

- low power
- low bandwidth
- addressing
- affordable
- small
- standardized
- popular for DIY, easy to learn

802.15.4 Topologies

- single peer
- multi-peer
- broadcast

Antennas

Chip Antenna on Pro

Breakout for Breadboards

Breakout Boards for breadboarding

Soldering Breakout Boards: finished

XBee Explorer from Sparkfun

XBee Adapter kit from Adafruit

Serial Terminal Programs

Serial Terminal Programs

- X-CTU: <u>http://www.digi.com/support/productdetl.jsp?</u> pid=3352&osvid=57&tp=4&s=316
- CoolTerm http://freeware.the-meiers.org/
- HyperTerm: Windows Start Menu, Accessories, Communication
- screen: Terminal program on the Mac (or Linux)
- plenty of others!
- settings: 9600 baud, 8 bits, no parity, one stop bit, no flow control

XBee Addressing

Addressing Basics

- channels
- PAN ID
- 64 bit addresses, aka serial numbers
- 16 bit addresses

Addressing Basics

- channels
- PAN ID
- 64 bit addresses (SN)
- 16 bit addresses

Basic Configuration

Download and Install Software & Drivers

- Download & install the FTDI USB drivers: <u>http://www.ftdichip.com/Drivers/VCP.htm</u>
- Download the CoolTerm: <u>http://freeware.the-meiers.org</u>/

Other Serial Terminal Options: settings: 9600 baud, 8 bits, no parity, one stop bit, no flow control

- X-CTU: <u>http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=4&s=316</u>
- Z-Term: <u>http://homepage.mac.com/dalverson/zterm/</u>
- HyperTerm: Windows Start Menu, Accessories, Communication
- Screen: Terminal program on the Mac (or Linux)

Open CoolTerm

Set Connection Options

Serial Port O	ptions	Terminal Options	
Port:	usbserial-A70041zr 🛟	🗹 Local Echo	
Baudrate:	9600	Convert Non-printable Characters	
Data Bits:	8	(ASCII View)	
Parity:	none	Handle Backspace Character	
Stop Bits:	1		
Flow Control	: 🗆 CTS	Enter Key Emulation: 💿 CR+LF	
	DTR		
	XON		
Send String Options		Special Options	
Terminate	e 'Send String' Data	Loop back received data	
Termination	String (Hex): 0D 0A	Ignore receive signal errors	
Re-Scan Serial Ports		Cancel OK	

Configure your radio with AT commands

• Configure your radio

e o New Open Save	CoolTerm_1 *	ta Options View Hex	elp
+++OK ATID3456 OK ATMY2 OK ATID1 OK			
usbserial-A70041zr Connected 00:01:20	/ 9600 8-N-1	 ⊖ RTS ⊖ DTR ⊖ CTS ⊖ DSR 	

Baud, Bits and Parity

- Baud rate: 9600
- Data bits: 8
- Stop bits: 1
- Parity: None
- Flow control: none for now...

Basic Configuration

AT Commands

Data Mode vs. Command Mode

- Idle Mode, transmit and receive data
- Command Mode, talk to the XBee itself
 - +++ "Yo, XBee"
 - AT "*Attention!*" (Hayes command set)

- always press enter after AT commands
- *never* press enter after +++

Some AT Commands

- AT -> OK
- ATDH, ATDL -> destination address hi/lo
- ATID -> personal area network ID
- ATCN -> end command mode
- ATWR -> write current configuration to firmware
- ATMY -> my address

Create a Basic XBee Pair

- Two radios paired together
- One's ATMY address is the other's ATDL destination
- ATRE will set your radio back to factory defaults
- ATWR will save your configuration. Use it!

• Remember, the radios work reliably, troubleshooting is mostly about figuring out what they're doing.

XBee Breadboard Hookups

Wiring

Input/Output Wiring 802.15.4: Basic Breakout

Input/Output Wiring 802.15.4: Parallax XBee USB

XBee Arduino Breadboard Layout

Power, Ground

TX, RX

XBee Connections (pin 1, 2, 3 and 10)

Remember!

- Use only +3.3 Volts. More than +7 Volts will kill your radio
- If you use a voltage regulator, <u>always</u> use decoupling capacitors. The radios often don't work without them.
- XBee TX goes to Arduino RX and vice versa.
- Unplug the TX & RX before uploading Arduino code (or use switches)
- You can't send infinitely fast. Try putting a 10 ms delay into your loop.

Arduino Shield

Doorbells

Basic Doorbell

Feedback Doorbell

Nap Doorbell

Final Project Suggested Timeline

- Week 10: Make observations, select your idea and finalize your group
- Week 11: Build a prototype and test it. Observe the results.
- Week 12: Build a revision and test it. Observe the results.
- Week 13: Create a final that works well, with a presentation and demo that tells its story
- Week 14: Final Presentations
- Week 15: Final Presentations

Readings and Assignments

- Readings
 - DOCUMENTATION OF EVERYTHING TO DATE
- Assignment
 - Wireless lab
 - Build a prototype and test it. Observe the results.