
Network Objects	

Instructor: Rob Faludi

Plan for Today

• XBee Firmware

• XBee I/O Workshop

• API Mode

• Readings & Assignments

XBee Firmware

X-CTU

• Features:

• terminal

• firmware

• configuration

• tests

• Demo: updating firmware

Firmware Upload

• X-CTU Program

• Special circuit, dongle or development board

• Firmware, command interface, test area, terminal all Windows-only

Firmware Upload Board

SparkFun part#PCB-FT232RL, wired to RX, TX, RTS, DTR, 3.3V, Gnd

XBee Explorer

XBee I/O mode

I/O Why

• Why:

• Save space, save power, save weight and save money

• Reduce complications

• Why not:

• Limited inputs/outputs

• No access to logic

• Each radio must be manually configured

• For simple input and/or output

• Eight digital input/outputs

• One additional digital output

• Seven analog inputs

• Two analog outputs

• But not all at once! Pins are shared.

I/O Intro

Input/Output Wiring

+3.3 V
transmit
receive

Ground

I/O pins

PWM out
Voltage

reference

Input/Output Wiring

+3.3 V only

transmit

receive
ground

+Voltage

input/output

analog
output

voltage reference

vref jumper

I/O AT Commands

• ATD0...D8 -> configure pins for I/O

• ATIR -> sample rate

• ATIT -> samples before transmit

• ATP0...P1 -> PWM configuration

• ATIU -> I/O output enable (UART)

• ATIA -> I/O input address

Example Configuration

• ATID3456 (PAN ID)
ATMY1 my address 1
ATDL2 destination address 2
ATD02 pin 0 in analog in mode
ATD13 pin 1 in digital in mode
ATIR14 sample rate 20 milliseconds (hex 14)
ATIT5 samples before transmit 5
ATWR write settings to firmware

• ATID3456 (PAN ID)
ATMY2 my address 2
ATDL1 destination address 1
ATP02 PWM 0 in PWM mode
ATD15 pin 1 in digital out high mode
ATIU1 I/O output enabled
ATIA1 I/O input from address 1
ATWR write settings to firmware

I/O Workshop

• Set up input and output radios with sensors

• Transmit values without any external microcontroller

Common XBee Mistakes

• http://www.faludi.com/projects/common-xbee-mistakes/

Protocols

• Sending

• Flow control

• Call / response

• Broadcast

• Start / stop

• Checksums

• Collisions

XBee API Mode

API Mode

• Application Programming Interface

• “An application programming interface (API) is a source code interface that
an operating system or library provides to support requests for services to
be made of it by computer programs.”
 http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487

• XBees in API mode are ready to talk to computers and microcontrollers

• structured

• predictable

• reliable

http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487

API Structure

• Used in serial communications with the XBee radio

• Frames of data

• envelope structure contains data with metadata inside a constrained format

• Radio must be in API Mode

• AT command ATAP 1 on Series 1 radios

• API firmware on Series 2 radios

Why API

• Rather than:

• With a library you just write:

delay(1100);
 // put the XBee in command mode

Serial.print("+++");
delay(1100);
if (checkFor("OK", 1000)) {

Serial.println("ATID7777,CN");
 if (checkFor("OK", 1000)) {
 // if an OK was received then continue
 debugPrintln("SetupOK");
 success = true;

}
}

sendCommand(ID,0x7777);

• From address, to address, outside, inside, size, contents, error check

Envelope Has:

API Basic Frame Envelope

Start Byte

• 0x7E --> also known as the tilde in ASCII: ~

• First thing to do is look for it:

 // ARDUINO VERSION:
if (Serial.available() > 0) { // if a byte is waiting in the buffer
 inByte = Serial.read(); // read a byte from the buffer

 if (inByte == 0x7E) {
// we’re at the start of an API frame!
// add more code here

}
}

 // PROCESSING VERSION:
if (port.available() > 0 {

int inByte = port.read();
 if (inByte == 0x7E) {

// we’re at the start of an API frame!
// add more code here

}

Length Bytes

• MSB: the Most Significant Byte

• the big part of the number

• LSB: the Least Significant Byte

• the small part of the number

• bit shift MSB to the right and add it to LSB

 // PROCESSING VERSION:
int lengthMSB = port.read(); // high byte for length of packet
int lengthLSB = port.read(); // low byte for length of packet

int lengthTotal = (lengthMSB << 8) + lengthLSB; // bit shift and add for total

API Identifier

• Specifies the remaining structure of the frame
• modem status: 0x8A
• AT command (immediate): 0x08
• AT command (queued): 0x09
• AT command response: 0x88
• TX request (64 bit): 0x00
• TX request (16 bit): 0x01
• TX status response: 0x89
• RX packet (64 bit): 0x80
• RX packet (16 bit): 0x81
• RX packet I/O data (64 bit): 0x82
• RX packet I/O data (16 bit): 0x83

 // PROCESSING VERSION:
int API_ID = port.read(); // API Identifier indicates type of packet received

Identifier-specific Data

• Structures are different for each API identifier and might include:

• addressing information (333B)

• status information (received OK)

• source information (broadcast packet)

• unstructured data (“Hello World, this is Rob!”)

• structured data (typically for I/O packets)

Checksum

• Simple check to detect errors

• To calculate: Not including frame delimiters and length, add all bytes keeping
only the lowest 8 bits of the result and subtract from 0xFF.

• To verify: Add all bytes (include checksum, but not the delimiter and length). If
the checksum is correct, the sum will equal 0xFF.

 // PROCESSING VERSION:
int localChecksum = (API_ID + addrMSB + addrLSB + RSSI + options + dataSum);

int checksum = port.read();
localChecksum = byte(0xFF -localChecksum);

if ((byte) checksum - localChecksum == 0) {
returnVal = dataADC[0];

}
else {

print("\n\nchecksum error! " + "\n\n");
}

Many Kinds of Envelopes

Modem Status

AT Command

AT Response

• Frame ID for the response is the same as the matching AT Command request

TX (Transmit) Request

• Remember that this is a request

• Also need to check for results by Frame ID

TX Status (Results)

• See if your message was transmitted or not

• Use your Frame ID to see which message is being described

RX Packet (16 bit addressing)

• Maximum of 100 bytes of data per packet

• RF Data section is basis for I/O packets

I/O Data Header

• Inside the RF Data section of the RX Packet

• Total number of samples set with ATIS

• Channels set with ATD0...9

I/O Data Sample

• Follows the header

• Two bytes of digital data IF ANY DIGITAL CHANNELS ENABLED followed by...

• ...two bytes for EACH analog channel enabled...

• ...then repeats for each sample

• How many bytes if ATIS5 ATD02 ATD12 ATD23?

I/O Code: Basic

• Fixed parameters make for easier programming

• Assume we are just reading a single sample of one ADC channel at a time:

 // PROCESSING VERSION:
int totalSamples = port.read(); // this is the number of samples we're receiving
int channelIndicatorHigh = port.read(); // this tells us which analog channels

// are in use (and one digital channel)
int channelIndicatorLow = port.read(); // this tells us which digital channels

// are in use.

int dataADCMSB = port.read(); // read in the most significant ADC byte
int dataADCLSB = port.read(); // read in the least significant ADC byte
int dataADC = (dataADCMSB << 8) + dataADCLSB; // bit shift the MSB into

// position and add it to the LSB

 print(dataADC); // print the information
}

Readings and Assignments

• Assignment

• Final Project

