
Sensitive Buildings

Instructor: Rob Faludi

Plan for Today

• Doorbell Projects: review

• I/O Mode

• I/O Demo

• Voltage Dividers

• API Mode Overview

• API Mode Details

• Readings & Assignments

Doorbell Projects Review

I/O Mode

Direct, Indirect, Subtext

• What data can we sense directly?

• How about inferences that we can make from the data?

• What’s the subtext of the data? What can we infer from the inference?

• For simple input and/or output

• Ten digital input/outputs

• Four analog inputs

• No analog outputs on ZigBee

• But not all at once! Pins are shared.

I/O Intro: ZigBee

I/O Why

• Why:

• Save space, save power, save weight and save money

• Reduce complications

• Why not:

• Limited inputs/outputs

• No access to logic

• No analog output on ZigBee radios

Input/Output Wiring: ZigBee

Settting I/O Pins

• ATDx 0 Disabled

• ATDx 1 Built-in Function (sometimes)

• ATDx 2 Analog Input (sometimes)

• ATDx 3 Digital Input

• ATDx 4 Digital Output, low to start with

• ATDx 5 Digital Output, high to start with

• ...so ATD32 would set which pin to which mode?

I/O AT Commands: ZigBee

• ATD0...D7 -> configure pins for I/O (D8 and D9 not supported yet)

• ATP0...P1 -> configure pins 10 - 11 for I/O (P3 not supported yet)

• ATIR -> sample rate

• samples before transmit is always 1

• destination address receives sample info

• ALL PINS READ BETWEEN 0 AND 1.2 VOLTS ONLY

Example Configuration

• SENDER:
ATID3456 (PAN ID)
ATDH -> set to SH of partner radio
ATDL -> set to SL of partner radio
ATJV1 -> rejoin with coordinator on startup
ATD02 pin 0 in analog in mode
ATD13 pin 1 in digital in mode
ATIR64 sample rate 100 millisecs (hex 64)

• RECEIVER
ATID3456 (PAN ID)
ATDH -> set to SH of partner radio
ATDL -> set to SL of partner radio

I/O Demo

XBee ZigBees inputs are 1.2V range

Voltage Divider to map 3.3V range to 1.2V range

Romantic Lighting Sensor

API Mode Overview

API Mode

• Application Programming Interface

• “An application programming interface (API) is a source code interface that
an operating system or library provides to support requests for services to
be made of it by computer programs.”
 http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487

• XBees in API mode are ready to talk to computers and microcontrollers

• structured

• predictable

• reliable

http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487

API Structure

• Used in serial communications with the XBee radio

• Frames of data

• envelope structure contains data with metadata inside a constrained format

• Radio must be in API Mode

• AT command ATAP 1 on Series 1 radios

• API firmware on Series 2 radios

Why API

• Rather than:

• With a library you just write:

delay(1100);
 // put the XBee in command mode

Serial.print("+++");
delay(1100);
if (checkFor("OK", 1000)) {

Serial.println("ATID7777,CN");
 if (checkFor("OK", 1000)) {
 // if an OK was received then continue
 debugPrintln("SetupOK");
 success = true;

}
}

sendCommand(ID,0x7777);

API & AT can Happily Co-exist

API Mode Details

Protocols

• Sending

• Start

• Length

• Contents

• Checksums

• Collisions

• From address, to address, outside, inside, size, contents, error check

Envelope Has:

API Basic Frame Envelope

Start Byte

• 0x7E --> also known as the tilde in ASCII: ~

• First thing to do is look for it:

 // ARDUINO VERSION:
if (Serial.available() > 0) { // if a byte is waiting in the buffer
 inByte = Serial.read(); // read a byte from the buffer

 if (inByte == 0x7E) {
// we’re at the start of an API frame!
// add more code here

}
}

 // PROCESSING VERSION:
if (port.available() > 0 {

int inByte = port.read();
 if (inByte == 0x7E) {

// we’re at the start of an API frame!
// add more code here

}

Length Bytes

• MSB: the Most Significant Byte

• the big part of the number

• LSB: the Least Significant Byte

• the small part of the number

• bit shift MSB to the right and add it to LSB

 // PROCESSING VERSION:
int lengthMSB = port.read(); // high byte for length of packet
int lengthLSB = port.read(); // low byte for length of packet

int lengthTotal = (lengthMSB * 0x100) + lengthLSB; //multiply and add for total

API Identifier

• Specifies the remaining structure of the frame
• modem status: 0x8A
• AT command (immediate): 0x08
• AT command (queued): 0x09
• AT command response: 0x88
• TX request: 0x10
• TX status response: 0x8B
• RX packet: 0x90
• RX packet I/O data: 0x92

 // PROCESSING VERSION:
int API_ID = port.read(); // API Identifier indicates type of packet received

Identifier-specific Data

• Structures are different for each API identifier and might include:

• addressing information (333B)

• status information (received OK)

• source information (broadcast packet)

• unstructured data (“Hello World, this is Rob!”)

• structured data (typically for I/O packets)

Checksum

• Simple check to detect errors

• To calculate: Not including frame delimiters and length, add all bytes keeping
only the lowest 8 bits of the result and subtract from 0xFF.

• To verify: Add all bytes (include checksum, but not the delimiter and length). If
the checksum is correct, the sum will equal 0xFF.

 // PROCESSING VERSION:
int localChecksum = (API_ID + addrMSB + addrLSB + RSSI + options + dataSum);

int checksum = port.read();
localChecksum = byte(0xFF -localChecksum);

if ((byte) checksum - localChecksum == 0) {
returnVal = dataADC[0];

}
else {

print("\n\nchecksum error! " + "\n\n");
}

Many Kinds of Envelopes

Modem Status: ZigBee

AT Command

AT Response

• Frame ID for the response is the same as the matching AT Command request

More API

TX (Transmit) Request

• Remember that this is a request. Results can be checked by Frame ID

TX Status (Results)

• See if your message was transmitted or not

• Use your Frame ID to see which message is being described

RX Packet

• Maximum of 72 bytes of data per packet

• RF Data section is basis for I/O packets

I/O RX Packet

I/O Digital Channel Mask and Digital Data

I/O Analog Channel Mask and Analog Samples

I/O Structure Reviewed

• Num Samples (1 byte)

• Digital Channel Mask (2 bytes)

• Analog Channel Mask (1 byte)

• Two bytes of digital data IF ANY DIGITAL CHANNELS ENABLED followed by...

• ...two bytes for EACH analog channel enabled...

• Q: How many bytes ATD02 ATD12 ATD23?

Readings and Assignments

• Readings

• Building Wireless Sensor Networks, Chapter 4

• Assignments

• Complete Doorbells

• Romantic Lighting Sensor

• Romantic Lighting Sensor with Feedback

