Battery Basics

Rob Faludi

there are thousands of different batteries

only one is best for your project

factors to consider

- Power needs
- Maximum current
- Run time
- Replacement schedule
- Size
- Shelf-life
- Context and availability

pressure and current

voltage ~= water pressure

amperes ~= water current

Wednesday, August 5, 2009

• <u>WATTS</u>

- wattage: W = VA
 - watts = volts * amps
 - 100 volts, 2A = ?
 - 3.3 volts, 100 mA = ?

power

capacity

- mAh = milliamp hour
 - how many milliamps supplied for I hour

- capacity is total power available over time
- run time is based on capacity

calculating run time

QUARTZ

power draw over time

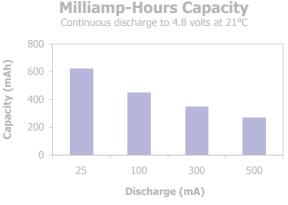
• mAh = mA * hours

measuring amperage

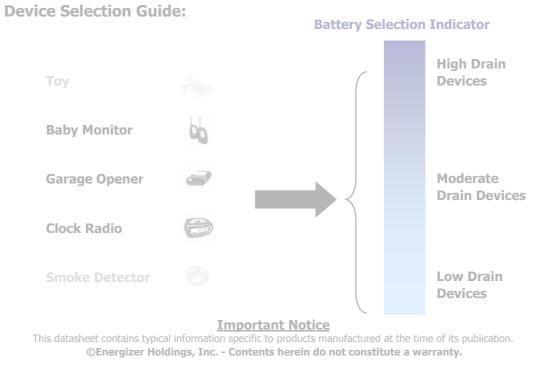

PRODUCT DATASHEET

ENERGIZER 522

1-800-383-7323 USA/CAN www.energizer.com


9\/

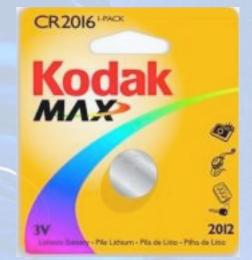
48.50 (1.909)


46.50 (1.831)

Zinc-Manganese Dioxide (Zn/MnO_2) No added mercury or cadmium ANSI-1604A, IEC-6LR61 9.0 volts -18°C to 55°C (0°F to 130°F) 45.6 grams (1.6 oz.) 21.1 cubic centimeters (1.3 cubic inch) Metal 5 years at 21°C (80% of initial capacity) Miniature Snap

- mAh
- max current
- voltage

46.40 (1.827)


Maximum

batteries come in more than one flavor

chemistry

- Alkaline
- NiMH
- NiCad
- Lithium
- Lithium Ion

size, life and access

- D, C, AA, AAA
- Coin cells
- Li-ion packs

- Self draining
- Availability

other stuff

• Capacitors

Wednesday, August 5, 2009

sourcing

<u>http://itp.nyu.edu/</u>
<u>physcomp/Parts/</u>
<u>RechargeableBatteries</u>

<u>http://</u> <u>www.sparkfun.com/</u> <u>commerce/</u> <u>categories.php?c=54</u>

chargers

Basic	10 hours, 56 minutes	battery	ATMEGA168 microcontroller transmitting one serial byte every 500 ms at 9600 baud code
Arduino NG with 9V NiMH Rechargeable - LED blink	⁴ hcurs, 19 minbat	tery	LED on pin 12, on for 500 ms and off Conceptor of the second off transmitting one serial byte every 1000 ms at 9600 baud code
Arduino NG with 9V NiMH Rechargeable – LED strobe	8 hours, 0 minutes	Rayovac 9V NiMH 170 mAh battery	LED on pin 12, on for 10 ms and off for 990 ms. ATMEGA168 microcontroller transmitting one serial byte every 1000 ms at 9600 baud code
Arduino NG with 9V NiMH Rechargeable – LED PWM	4 hours, 29 minutes	Rayovac 9V NiMH 170 mAh battery	LED on pin 12, PWM to full brightness and back to zero every 1000 ms ATMEGA168 microcontroller transmitting one serial byte every 1000 ms at 9600 baud
http://v and-xb	vww.fal ee-batt	udi.com/ ery-test-	projects/arduino- results/
			transmitting one serial byte every 1000 ms at 9600 baud code
Arduino NG with 4 AA NiMH Rechargeable - Servo 1/2 rotation	18 hours, 8 minutes	4 AA NiMH 2500 mAh batteries	Servo on pin 2, 1/2 range rotation every 1000 ms, servo powered directly from AA pack ATMEGA168 microcontroller transmitting one serial byte every 1000 ms at 9600 baud code
Arduino NG with 9V NiMH Rechargeable - XBee	2 hours, 8 minutes 2 hours, 17 minutes	Rayovac 9V NiMH 170 mAh battery	ArduinoXBee shield v1.1 with XBee Series 1, no sleeping ATMEGA168 microcontroller transmitting one serial byte every 1000 ms at 9600 baud

battery factors

- I. power needs
- 2. max current
- 3. run time
- 4. capacity
- 5. size
- 6. shelf-life
- 7. context and availability

Rob Faludi <u>www.faludi.com</u>